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Claude’s Off Rio de Janeiro
(1933)

• Floating Ice Plant: 2.2 MW OC-
OTEC to produce 2000 tonnes of 
Ice →CWP Installation failure (no 
ocean engineers available)

• Historical slide from Inventor is 
indicative of multiple engineering 
disciplines required for OTEC 
Plants



US Federal Government 
(Rephrasing late 70’s to early 80’s OTEC Mandate)

By Year 2000 → 104 MW Installed
equivalent to 100 x 100 MW Plants 

(Capital  >  $40 x 109 )
Therefore,
Must implement optimized designs and 

industrial facilities for plantships 
producing OTEC electricity or other 
energy carriers to be delivered to 
shore…



US Federal Government 
OTEC Program (70’s –80’s) 

•Aim → optimize all components for 
projected $40B cumulative capital by 
year 2000;
•Hindsight → should have used funds 
($0.25 B) to build at least one “large” 
plant with off-the-shelve hardware…



US Federal Government 
OTEC Program 
Analytical Work

Designs

Model Basin Tests

At-Sea Tests

? 



Thermal Resource
Temperature Difference between 
Surface Water and 1,000 m Water 
(want > 20 °C) :

Yellow 18 to 20 °C
Orange 20 to 22 °C
Red 22 to 24 °C
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Hawaii Ocean Thermal Resource: 
Truisms

• OTEC plants could supply all the electricity 
and potable water consumed in the State, 
{but at what cost?}

• Only indigenous renewable energy resource
that can provide a high degree of energy 
security to the State and in addition minimize 
green house gas emissions; 

• Assessment also applicable to all US Island 
Territories.
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Other Applications: AC
Cold deep water as the chiller 
fluid in air conditioning (AC) 
systems: load can be met using 
1/10 of the energy required for 
conventional systems and with an 
investment payback period 
estimated at 3 to 4 years. 
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Energy Carriers

• OTEC energy could be transported 
via electrical, chemical, thermal and 
electrochemical carriers:

• Presently, all yield costs higher 
than those estimated for the 
submarine power cable (< 400 km offshore).



1990 Historical Data 14



Floating Platforms

• Several Platform Concepts (not 
shown: Tension Leg Platform, TLP)

• 40 MW APL Concrete Barge: 
135 m (Length); 43 m (Beam); 31 m (Depth)

• LMSC Submerged Power Block









CWP for Floating Platforms
- FRP Sandwich
- HDPE Bundle
- Reinforced Elastomer
- Concrete Pipe (not shown)
- Soft Pipe with pumps at intake (not 

shown)

→ Need ∼ 10 m i.d. for 100 MW
(FRP Sandwich Selected)





Floating Structures

• CWP/Platform Attachment 
(Gimbals)

• Submarine Power Cable & 
Attachments









Bottom-Mounted 
Structures

• Fixed Towers
• Guyed Towers
• TLP not shown
• Causeway (connected to existing Power Plant)

• Cold Water Pipe Installation
• Tunneling (cold-water-conduit)





GE Design ’80s





OTEC Plant using seawater efflux 
from Kahe Power Plant









1980 
Photo





NOAA Model Basin Tests
1/30th Scale Original 

APL Plantship (concrete barge)

Survival Seakeeping Tests:
Head, Quartering and Beam 

100th Year Storm Seas









Model Basin Tests
NOAA: 

1/110th Scale Modified APL Plantship

• Seakeeping; and, 

• Cold Water Pipe Towing Tests





1/110th Scale Modified Plantship



1/110th Scale Seakeeping Tests: Platform and CWP



Structural Model → see metal rod
Hydrodynamic Model → outer shell



1/110th Scale CWP Towing Tests (Head Seas)



Towing Tests 
(Beam Seas)



At-Sea Tests

DOE
OTEC-1: “1 MW” Heat Exchanger’s 
Tests (22,000 tonnes Tanker)

& 
CWP bundle of 3 x 48” HDPE Pipes







At-Sea Tests

NOAA: 1/3 Scale Suspended Cold 
Water Pipe (CWP): 30’ Diameter 
FRP-Sandwich Pipe

[Test Director: Vega]





Inner FRP Layer



Spraying
Foam Core



Outer FRP  Layer



CWP:
FRP Sandwich

0.38” Laminates
1.3” core



CWP Launching Sequence

- 8’ Diameter x 40’ Sections 
butt-jointed into →

-80’ Lengths in Washington State 
for land/ocean transport to Hawaii

- Field-jointed into 400’ CWP









CWP Towing Sequence

“Flotilla” Towing Pipe to test site 
off Waikiki 

(N.B. numerous vessels involved)













At-Sea Test Data Used to 
Validate Computer Model 

of CWP Structural 
Response

Nihous & Vega







At-Sea Tests
NOAA

1/3 Scale Bottom-Mounted 
CWP Test:

- First sequence shows MOE’s 
plexiglass model used to train divers

- Second Sequence is actual 
deployment

















Note size of Concrete Footing vs. Diver



Note steep slope  ≈ 30º





Monitoring Diver’s Operations



OC-OTEC Experimental 
Plants

DOE & SOH
210 kW Experimental Apparatus

- Concrete Vacuum Structure 
25’ (dia.) x 31’ Height (overall height: 43’)

- Turbine 
10’ dia. radial inlet; 7’ dia. axial outlet





210 kW OC-OTEC Experimental Plant

(Vega et al: 1993-1998)



Pump Station



Waves Pounding Pump Station



OC-OTEC
Steam 
Turbine

7’ dia. 
Axial Outlet

10’ dia. 
Radial Inlet



OC-OTEC 
Evaporator 

Spouts

Joe 
McCleskey



Electrical 
Generator



Desalinated 
Water

Production
(Vega et al:’94-’98)

Peter 
Shackelford

Joe Clarkson



FinsSurface Condenser:  Steam Fins



Surface Condenser:  
Extruded Water Channels



Control Room



Aluminum Corrosion Testing
• Argonne National Laboratory field tests 

at NELHA (’83-’87): Evaluate Al as 
material for OTEC Heat Exchangers

• Over 30-year life wall thickness (“t”) 
losses  

< 90 µm in evaporator; and, 
< 200 µm in condenser; →



Aluminum Corrosion Testing
• Bare Al alloys, exposed to flowing seawater, 

exhibit two stages of uniform corrosion: (i) a 
relatively high rate over the first 200 days 
(mostly in surface seawater); (ii) followed by 
asymptotic limiting rates corresponding to annual 
“t” losses of < 3 µm (surface water) and 7 µm
(deep water);

• Results are only applicable for seamless flow 
channels.  For the condenser, brazed joints 
fabricated using commercial fluxes are not 
acceptable.







CWP for the 
210 kW OC-OTEC

40” HDPE CWP 
for the 

210 kW Experimental Apparatus:
- Towing to site
- Intake at 670 m



Design by 
Makai Ocean Eng.







210 kW OC-OTEC 
Experimental Apparatus

OTEC World Records by Vega et al:

- Power production: 256 kW (24/7)

- Desalinated Water Production: 0.35 l/s 
(5.5 gpm)



CC-OTEC Experimental 
Plants

• 50 kW MiniOTEC (Lockheed, Hawaiian Dredging, State 
of Hawaii …)

• 100 kW Nauru Plant (Tokyo Electric et al)

• 50 kW Test Apparatus (PICHTR, HEI, SOH)



MiniOTEC 
(1979)

50 kW CC-OTEC



Nauru (1982)

100 kW CC-OTEC



50 kW CC-OTEC (NH3) Test Apparatus

(Vega et al: 1999)



Land Based OC-OTEC Plant 
for the Production of 

Electricity and Fresh Water 

•1.8 MW Gross Power for either:
1.2 MW-net and 2,200 m3/day; or, 
1.1 MW-net and 5,150 m3/day

•Bottom-mounted CWP: 1.6 m HDPE 
Pipe



5 MW Pre-Commercial Plant 
Design 

(1/5 Scale of 25 MW Module)

•33,000 tonnes ship, 10 km Offshore

•CWP: 2.74 m id x 1000 m FRP Pipe

•Single Point Counterweight-
Articulated-Mooring System includes 
power and desalinated water swivels 
for transmission to shore
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Lessons Learned

• Life-Cycle Design

• Constructability

• System Integration

• Embellishing        Negative 
Consequences
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Lessons Learned

Life-Cycle Design

e.g., locating a component in the water 
column might yield higher 
efficiencies but result in elaborate 
maintenance requirements and 
higher operational costs 
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Lessons Learned

Constructability

Can equipment be manufactured using 
commercially available practices and 
in existing factories? 



111

Lessons Learned

System Integration
In addition to power block (HXs & T-G), 

OTEC includes seawater 
subsystems; dynamic positioning
subsystems; and, submarine power 
cable
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Lessons Learned

Embellishment

Has led to credibility barriers 
and unrealistic expectations…

Please stop it!
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Environmental Impact Assessment 
(Lawrence Berkeley Lab.)

• OTEC can be an environmentally 
benign alternative for the 
production of electricity and 
desalinated water in tropical islands 

• Potentially detrimental effects can 
be mitigated by proper design
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Temp.  Anomalies & Upwelling
Sustained flow of cold, nutrient-
rich, bacteria-free deep ocean 
water could cause: 

- sea surface temp. anomalies; 
- biostimulation 

If and only if resident times in 
the mixed layer; and, the euphotic 
zone are long enough
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Euphotic Zone: Tropical Oceans
• The euphotic zone: layer in which 

there is sufficient light for 
photosynthesis;

• Conservative Definition: 1 % light-
penetration depth (e.g., 120 m in Hawaii);

• Practical Definition: biological 
activity requires radiation levels 
of at least 10 % of the sea 
surface value (e.g., 60 m in Hawaii). 
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EIA

Can OTEC have an impact on the 
environment below the oceanic 
mixed layer (sea surface to ∼ 100 m) and, 
therefore, long-term significance 
in the marine environment? 
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OTEC Return Water
• Mixed seawater returned at 60 m 

depth → dilution coefficient of 4
(i.e., 1 part OTEC effluent is mixed with 3 parts 
of the ambient seawater) → equilibrium 
(neutral buoyancy) depths below 
the mixed layer;

• Marine food web should be 
minimally affected and sea 
surface temperature anomalies 
should not be induced.
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EIA: Construction 

OTEC Construction phase: 

- similar to construction of power 
plants;  shipbuilding; and, offshore 
platforms; 
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EIA: Operations
• Unique to OTEC is the movement 

of seawater streams and the 
effect of passing such streams 
through the components before 
returning them to the ocean;

• Losses of inshore fish eggs and 
larvae, as well as juvenile fish, due 
to impingement and entrainment 
may reduce fish populations.
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EIA: Operations

• CC-OTEC handling of hazardous 
substances is limited to the working 
fluid (NH3) and the biocide (Cl2, 
evaporator biofouling);

• None for OC-OTEC
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EIA: Operations
• Use of Cl2 and NH3 similar to other 

human activities;  

• If, for example, USA occupational 
health and safety regulations are 
followed, working fluid and biocide 
emissions from a plant should be too 
low to detect outside the plant site.  



122

CO2 Outgassing
• CO2 out-gassing from the 

seawater used for the operation 
of an OC-OTEC plant is < 0.5% the 
amount released by fuel oil plants;  

• The value is even lower in the case 
of a CC-OTEC plant.



What is known about 
OTEC Economics ?

• Economically competitive 
under certain “scenarios” 
(defined by fuel-and-water-costs) :

[Vega, 1992] 



Nominal Size, 
MW

TYPE
(After Eng. Dev.)

Scenario 
(by ∼ 10th Plant)

Potential Sites

1 Land-Based OC-OTEC 
with 2nd Stage for 
Additional Water 
Production.

Diesel: 
$45/barrel
Water: $1.6/m3

Present Situation in Some 
Small Island States.

10 Same as Above. Fuel Oil: 
$30/barrel
Water: 
$0.9/ m3

U.S. Pacific Insular Areas 
and other Island Nations.

50 Land-Based Hybrid
CC-OTEC with 2nd Stage.

$50/barrel
$0.4/ m3

or

$30/barrel
$0.8/ m3

Hawaii, Puerto Rico
If fuel or water cost 
doubles.

50 Land-Based CC-OTEC
$40/barrel

Same as Above.

100 CC-OTEC Plantship
$20/barrel

Numerous sites

Fuel and Water Costs Required for Competitiveness (1990)



Economics Summary: 
Hawai’i (2007)

Because OTEC is capital intensive
electricity cost-competitiveness if 
Size > 50 MW & > 15-year Life-
Cycle.
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Please Beware!!
Economy of Scale 10 vs. 100 MW →
• Power Block Cost of 100 MW plant is 

∼ 10 x 10 MW
• Seawater Subsystems & At-Sea 

Deployment of 100 MW is 
< 10 x 10 MW

• Staffing requirements constant 
100 MW = 10 MW
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Cost of Electricity Production

+ Fuel (for OTEC zero)
{- Environmental  Credit}

CC = Capital Cost Amortization
(N.B. much higher for OTEC)

OMR&R =  Operations + Maintenance  
+ Repair + Replacement

Tariff  =  COE + Profit - Subsidy
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Schedule
• Detailed-Engineering-Design ∼ one-

year;  Permits ∼ two-years;
• Major components are long-lead-
items, requiring 12 to 24+ months 
for delivery, and are available from 
established industry;

• As much as 5-years after-receipt-
of-order (ARO) is required before 
delivering electricity to grid.

131



OTEC Plant Schedule
OTEC PLANT SCHEDULE Year 1 Year 2 Year 3 Year 4 Year 5

1.0 MANAGEMENT

2.0 ENGINEERING DESIGN/PERMITS   

3.0 ACQUISITION & CONSTRUCTION Long-Lead Items

4.0 DEPLOYMENT

5.0 STARTUP & COMMISSIONING

6.0  OPERATIONS 
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OTEC Resource Data

Gérard C. Nihous
Dept. of Ocean and Resources Engineering

University of Hawaii



• A change of 1 C in ∆T roughly leads 
to a change of 15% in Pnet.

• Around Hawaii, ∆T can be mapped 
from daily HYCOM+NCODA data 
(1/12 resolution) since late June 
2007.



• Examples for ∆T defined between 
20 m and 1000 m water depths: 
- Feb. 1st ‘08 (‘cool season’ snapshot)

- Oct. 1st ‘08 (‘warm season’ snapshot)

- Aug. ‘08 & Feb ‘09 
(spatial and temporal variability)







H2 or NH3 OTEC Plantships

Nihous & Vega



Plantships
• Floating platforms housing hydrogen 

or ammonia plants operated with 100 
MW of OTEC-generated electricity 
have been conceptualized; 

• These plantships, deployed 
throughout the tropical oceans, 
could provide a significant source of 
energy in the form of liquid 
hydrogen or ammonia;  



DP Plantship
• A 285,OOO-tonne ship-shaped vessel is 

first proposed.  It provides deck space 
for the OTEC plant, H2 or NH3 plant, 
storage, and crew quarters; 

• A length of 250 m and a beam of 60 m 
are sufficient to accommodate five 
seawater sumps; operational draught is 
20 m; 4 x 3000 hp thrusters permit 
grazing at 0.5 knots and maneuvering 
capability; 









Momentum Flux Plantship
• A more compact plantship, jet-propelled 

by the momentum flux of the OTEC 
discharge seawater is conceptualized;

• The length is reduced to 200 m for a 
displacement of 225,000 tonnes.  Only 
one sump is required and warm seawater 
is fed through lateral openings. 





OTEC: The Challenge
• Major Challenge is not technical but 

rather  financing of a  capital intensive 
technology without an operational record;

• If plant > 50 MW, cost of electricity 
($/kWh) would be cost competitive; 
→ How do you get more than ¾ Billion Dollars for a 100 MW plant 
without a “track record” and without invoking national security, global 
warming, environmental credits, etc.?

• Without operational records from a pre-
commercial plant (∼ 5 MW) financing of 
commercial sized plants (> 50 MW) is highly 
doubtful;
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Development Schedule
(Assumption/Hope/Please)

USA OTEC DEVELOPMENT ← YEARS →
1 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to  ∞

Pre-Commercial Plant (> 5 MW) Ops

Electricity (Desal Water) Plants  
in Hawaii and USA Territories:       
~ 20 x 100 MW Plants 

Prelim 
Design Ops Ops → →

NH3/H2 Plantships Supplying all 
States

Prelim 
Design Ops  →

147
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Global Oil Resources
• Consensus: 

< 50 years until oil gone
Diminishing resources → Price 
Increases

• Presently, H2 produced with OTEC 
electricity is equivalent to ∼ 6 x price of 
oil

→ Would it be wise to begin to consider H2
production onboard OTEC plantships 
deployed along Equator?
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