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Ocean Thermal Energy Conversion

History
Mostly about USA
19805 to 1990
and
bias towards Vega's Experience
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OTEC PHYSICAL SYSTEMS
GENERAL CHARACTERISTICS
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Claude's Off Rio de Janeiro

(1933)

* Floating Ice Plant: 2.2 MW OC-
OTEC to produce 2000 tonnes of
Ice —CWP Installation failure (no
ocean engineers available)

* Historical slide from Inventor is
indicative of multiple engineering
disciplines required for OTEC
Plants



US Federal Government
(Rephrasing late 705 to early 80s OTEC Mandate)

By Year 2000 — 10* MW Installed
eguivalent to 100 x 100 MW Plants

(Capital > $40 x 10° )
Therefore,
Must implement optimized designs and
industrial facilities for plantships
producing OTEC electricity or other

energy carriers to be delivered to
shore...




US Federal Government
OTEC Program (70's -80's)

*Aim — optimize all components for
projected $40B cumulative capital by
year 2000;

*Hindsight — should have used funds
($0.25 B) to build at least one “large”
plant with off-the-shelve hardware...



US Federal Government
OTEC Program

Analytical Work

!
Designs

|
Model Basin Tests
|
At-Sea Tests

!
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Temperature Difference between
Surface Water and 1,000 m Water
(want > 20 °C):

Orange 20 10 22 °C
Red 22 to 24 °C




OTEC  THERMAL RESOURCE




Hawaii Ocean Thermal Resource:
Truisms

+ OTEC plants could supply all the electricity
and potable water consumed in the State,

{but at what cost?}

* Only indigenous renewable energy resource
that can provide a high degree of energy
security to the State and in addition minimize
green house gas emissions;

+ Assessment also applicable to all US Island
Territories.

OTEC 11



Other Applications: AC

Cold deep water as the chiller
fluid in air conditioning (AC)
systems: load can be met using
1/10 of the energy required for
conventional systems and with an
investment payback period
estimated at 3 to 4 years.

OTEC

12



Energy Carriers

+ OTEC energy could be transported
via electrical, chemical, thermal and
electrochemical carriers:

» Presently, all yield costs higher
than those estimated for the
S'meal‘lhe pOWZ/" Cab/e (< 400 km offshore).

OTEC 13
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Floating Platforms

+ Several Platform Concepts (not
shown: Tension Leg Platform, TLP)

+ 40 MW APL Concrete Barge:
135 m (Length); 43 m (Beam); 31 m (Depth)

* LMSC Submerged Power Block






PROPOSED SEAKEEPING IMPROVEMENTS FOR
MODEL OF APL BARGE

MAJOR IMPROVEMENTS

1. INCREASE LENGTH FROM 440 TO
580 FT TO REDUCE PITCH MOTION

2. ADD BILGE KEELS TO REDUCE
ROLL MOTION

3. CHANGE RECTANGULAR TO
CIRCULAR SHAPED BOW AND
STERN TO REDUCE WAVE SLAP

4. ADD FLARES AND SPOILERS TO
REDUCE OVERTOPPING

:‘.. “‘II " i ‘L
95(105) f
: i X j 5. INCREASE FREE BOARD AND
il -~ \

NOTE: ALL MEASUREMENTS IN FEET 6. REDUCE TRIM
OPERATING DRAFT: 59
SURVIVAL DRAFT: 50

7. REMOVE WARM WATER PODS TO

OPERATING A: 228 LBS AVOID WAVE FOCUS EFFECTS
1:110 SCALE MADEL SURVIVAL A: 1931L8S
OPERATING KG: a7

I o ‘ SURVIVAL KG: 394



Ocean Thermal Energy Conversion (OTEC)
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- FRP Sandwich

- HDPE Bundle

- Reinforced Elastomer

- Concrete Pipe (not shown)

- Soft Pipe with pumps at intake (not
shown)

— Need ~ 10 m i.d. for 100 MW
(FRP Sandwich Selected)




10/40 MW PLANT CWP DESIGNS

fe—15M
FRP SANDWICH MULTIPLE POLYETHYLENE ELASTOMER



- CWP/Platform Attachment
(Gimbals)

- Submarine Power Cable &
Attachments




CWP/PLATFORM INTERFACE DESIGNS




SCOFF SELF-CONTAINED 138 KV 100 MW OTEC RISER CABLE

DESIGN 14
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OTEC POWER TRANSMISSION RISER CABLE DEPLOYMENT SCHEMES

SIMPLEX

WIRE AND CABLE COMPANY
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Bottom-Mounted
Structures

* Fixed Towers

* Guyed Towers

* TLP not shown

- Caus E€WQY (connected to existing Power Plant)

» Cold Water Pipe Installation

» Tunneling (cold-water-conduit)



OTEC 10/40 MWe FIXED OFFSHORE TOWER POWER PLANT,
ARRANGEMENT DRAWING BY J. RAY McDERMOTT & COMPANY, INC. (6)

\/ CRANE
% QUARTERS AND
=] CONTROL BUILDING

-~—10/40 MEGAWATT
POWER SYSTEM

| 250°-0 W.D. /

SO\
'APPROXIMATE sm;g\m:\'x\

- .

30°-0 DIA. PIPE
5000° LONG

3000°

230 DIA.
DISCHARGE LINE

PIPE SUPPORTS
(TYP.)




GE Design '80s




400 TO 800 MWe OTEC GUYED TOWER BY
J. RAY McDERMOTT & COMPANY, INC.




OTEC Plant using seawater efflux
from Kahe Power Plant




OTEC PILOT PLANT CONCEPT
AT KAHE POINT, OAHU

. le— 1100 M 2750 M
TATION
II - WATER LEVEL
- : : "
i > 100M f
ELECTRICAL COLD WATER PIPE
CABLE 10 M. DIA 1000M




SHELF MOUNTED OTEC PLANT
DEPLOYING MARINE RAILWAY




SHELF MOUNTED OTEC PLANT
CWP AND PLATFORM INSTALLATION
COMPLETED, INSTALLING POWER PLANT




'Hawaiian Electric Company

' 686-MW Oil-Fired
8 Electric Generating Station

at Kahe Point, Oahu







NOAA Model Basin Tests

1/30™" Scale Original
APL Plantship (concrete barge)

Survival Seakeeping Tests:
Head, Quartering and Beam
100 Year Storm Seas













Model Basin Tests

NOAA:
1/110%™ Scale Modified APL Plantship

» Seakeeping; and,

» Cold Water Pipe Towing Tests



PROPOSED SEAKEEPING IMPROVEMENTS FOR
MODEL OF APL BARGE

MAJOR IMPROVEMENTS

1. INCREASE LENGTH FROM 440 TO
580 FT TO REDUCE PITCH MOTION

2. ADD BILGE KEELS TO REDUCE
ROLL MOTION

3. CHANGE RECTANGULAR TO
CIRCULAR SHAPED BOW AND
STERN TO REDUCE WAVE SLAP

4. ADD FLARES AND SPOILERS TO
REDUCE OVERTOPPING

:‘.. “‘II " i ‘L
95(105) f
: i X j 5. INCREASE FREE BOARD AND
il -~ \

NOTE: ALL MEASUREMENTS IN FEET 6. REDUCE TRIM
OPERATING DRAFT: 59
SURVIVAL DRAFT: 50

7. REMOVE WARM WATER PODS TO

OPERATING A: 228 LBS AVOID WAVE FOCUS EFFECTS
1:110 SCALE MADEL SURVIVAL A: 1931L8S
OPERATING KG: a7

I o ‘ SURVIVAL KG: 394



' =S \
M s .
- A L]
— 4
. i e - u
s ' pe [ -
- o o
- T T -
N . ol o e .
. 3 :
j “ -
BL
13 ' -
' ' . 5 }'{%
. i

1/110th Scale Modified Plantship




1/110th Scale Seakeeping Tests: Platform and CWP
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Towing Tests
(Beam Seas)




At-Sea Tests

DOE

OTEC-1:. "1 MW" Heat Exchanger's
Tests (22,000 tonnes Tanker)

&
CWP bundle of 3 x 48" HDPE Pipes




ISOMETRIC CUTAWAY OF THE
OTEC-1 TEST PLATFORM, A
CONVERTED NAVY T-2 TANKER
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At-Sea Tests

NOAA: 1/3 Scale Suspended Cold
Water Pipe (CWP): 30° Diameter
FRP-Sandwich Pipe

[Test Director: Vega]
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1/3 Scale Sea Test Prograr
OTEC Cold Water Pip

Hawaiian Dredging & Construction Compar




Inner FRP Layer




Spraying —
Foam Core
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CWP:
FRP Sandwich
0.38" Laminates
1.3" core




CWP Launching Sequence

- 8 Diameter x 40" Sections
butt-jointed into —

-80" Lengths in Washington State
for land/ocean transport to Hawaii

- Field-jointed into 400" CWP












CWP Towing Sequence

"Flotilla" Towing Pipe to test site
of f Waikiki

(N.B. numerous vessels involved)


















At-Sea Test Data Used to
Validate Computer Model
of CWP Structural
Response

Nihous & Vega



VERT. PIPE DIMENSION (FT)
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OTEC AT-SEA TEST COLD WATER PIPE BENDING STRESS
COMPUTER PREDICTIONS VS AT-SEA TEST DATA
ROTECF, CASES VS RUN 3, 05/02

200 400 600 800 1000 1200 1400 1600
RMS BENDING STRESS (PSI)

1800

2000



BENDING STRAIN (MICROSTRAINS)

—900.00 —600.00 —300.00 0.00 300.00 600.00 900.00
nane 2 F 1 * D ’ | i
108/110 18 + O +
6870 30 + X . n
1001102 42 + o) +
96/98 67 X A +
65/95 79 + it
88/90 91 + )
84/86 = 103 + O +
80/82 120 +
CHANNEL/DEPTH

0 = MEAN A = ROOT MEAN SQUARE -+ = MAXIMUM X = MINIMUM

FILE: TEST ~ DATE: 04/23  TIME: 08:45  RUN: DISC 1 OF 8

BENDING STRAIN DISTRIBUTION ALONG
THE COLD WATER PIPE

83-1919-2



At-Sea Tests

NOAA
1/3 Scale Bottom-Mounted
CWP Test:

- First sequence shows MOE's
plexiglass model used to train divers

- Second Sequence is actual
deployment
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OC-OTEC Experimentadl
Plants

DOE & SOH
210 kW Experimental Apparatus
- Concrete Vacuum Structure
25’ (dia.) x 31" Height (overall height: 43’)

- Turbine
10' dia. radial inlet; 7' dia. axial outlet




210 kWe (gross) OPEN-CYCLE OTEC

EXPERIMENTAL APPARATUS FOR TH
€
PRODUCTION OF ELECTRICITY & FRESH WATER

By
THE PACIFIC INTERNATIONAL CENTER
FOR HIGH TECHNOLOGY RESEARCH

With
e ABAM CONSULTING ENGINEERS o MECHANICAL TECHNOLOGY, INC
o THERMAL ENGINEERING CORPORATION

e BARBER-NICHOLS INC.
e HAROLD H. MIURA INC

General Contractor
e ABREGO INC

Sponsored by

o |JS. DEPARTMENT OF ENERGY / NREL
. GTATE OF HAWAIl / DBED



(Vega et al: 1993-1998) "



Pump Station




Waves Pounding Pump Station



7' dia.

OC-OTEC
Steam
Turbine

| 10’ dia.
Radial Inlet




Joe
McCleskey

OC-OTEC
Evaporator
Spouts
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Electrical
Generator




Joe Clarkson

Peter
Shackelford
/
A

& Production
S . (Vega et al:"94-'98)



'..' Surface Condenser: Steam Fins




3

1"..!.1‘!!'!!!'.llll!.ll..l

!llI!H'IGIHIDIIIIMIIFISHEF1"

sllaivllilliscawrrttﬁutaﬁﬁnu
'ﬂ'lﬂ’fﬁtf??’r?f&iiﬁ&L&ﬁﬂﬂﬁh
r :xatnmn;a;ﬁsiﬁﬁu

IIIII'U"’

l.l'lll'llllﬂlillkl&il“$!ﬂﬁﬂ

-lllllllllll.uluull FEREENVE

lllllllll'i.llll..lrI'l.l!l!:

Surface Condenser:
Extruded Water Channels
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Aluminum Corrosion Testing

* Argonne National Laboratory field tests
at NELHA ('83-'87): Evaluate Al as
material for OTEC Heat Exchangers

» Over 30-year life wall thickness ("t")
losses

< 90 um in evaporator; and,
< 200 um in condenser:; —




Aluminum Corrosion Testing

+ Bare Al alloys, exposed to flowing seawater,
exhibit two stages of uniform corrosion: (i) a
relatively high rate over the first 200 dccliys
(mos’rl¥ in surface seawater); (ii) followed by
asymptotic limiting rates corresponding to annual
"t" losses of < 3 um (surface water) and 7 um
(deep water);

» Results are only applicable for seamless flow
channels. For the condenser, brazed joints
fabricated using commercial fluxes are not
acceptable.



500
400 7
300 {1

200

600 —/

kK — —

100 4~

I ] warm Water Cold Water l

30-yr Wall-Thickness Loss (jm)

Alclad
Aiclad
Bare
3004 Trane A
Unbrushed Brushed

FIGURE S-1 Wall-Thickness Loss for Candidate Aluminum Alloys




Environment Material Comments Conclusions

Warm Seawater Bare Al-3003 No pitting of drawn tubes; Acceptable
Drawn or Brazed some pitting at joints of
Elements brazed elements.
Bare Al-3003 No pitting. Acceptable
Trane Extrusions
Bare Al-5052 No pitting. Acceptable
Drawn Tubes
Alclad 3004 Small percent of sampling Acceptable
RFW Tubes showed pitting, which was

confined to cladding.

Diffused-Zn Al-3003 Shallow pitting, evidence of Acceptable
Trane Extrusion cathodic protection.
Alclad Infrequent,-shallow pitting. Acceptable
Drawn Tubes
Alclad No pitting. Acceptable
Brushed Drawn Tubes

Cold Seawater Bare AI-3003 Some samples showed Acceptable with
Drawn Tubes initiation of pitting. caution
Bare Al-5052 No pitting. Acceptable
Drawn Tubes
Diffused-Zn Al-3003 Some samples showed pitting.  Acceptable with
Trane Extrusion - caution
Alclad 3004 Pitting penetrated cladding; Welding process
RFW Tubes cathodic protection occurred. adversely affects

cladding.
Alclad Severe pitting. Cathodic Unacceptable
Drawn Tubes protection occurred. Lost
cladding.

Alclad No severe pitting. Acceptable

Brushed Drawn Tubes




CWP for the
210 kW OC-OTEC

40" HDPE CWP
for the
210 kW Experimental Apparatus:
- Towing to site
- Intake at 670 m
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210 kW OC-OTEC
Experimental Apparatus

OTEC World Records by Vega et al:
- Power production: 256 kW (24/7)

- Desalinated Water Production: 0.35 I/s
(5.5 gpm)



* 50 kW M|n|OTEC (Lockheed, Hawaiian Dredging, State

of Hawaii ...)

- 100 kW Nauru Plant (Tokyo Electric et al)
+ 50 kW Test Apparatus (rcHTR, HEL, SOH)




MIniIOTEC
(1979)

50 kW CC-OTEC




Nauru (1982)
100 KW CC-OTEC
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Ocean Thermal Energy Conversion 1982 ~ -



50 kW CC-OTEC (NH,) Test Apparatus

(Vega et al: 1999)



Land Based OC-OTEC Plant
for the Production of
Electricity and Fresh Water

-1.8 MW Gross Power for either:
1.2 MW-net and 2,200 m3/day:; or,
1.1 MW-net and 5,150 m3/day

‘Bottom-mounted CWP: 1.6 m HDPE
Pipe



5 MW Pre-Commercial Plant
Design

(1/5 Scale of 25 MW Module)

»33,000 tonnes ship, 10 km Offshore
*CWP: 2.74 m id x 1000 m FRP Pipe

»Single Point Counterweight-
Articulated-Mooring System includes
power and desalinated water swivels
for transmission to shore
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Lessons Learned

* Life-Cycle Design
» Constructability
- System Integration

+ Embellishing =) Negative
Consequences

108



Lessons Learned

Life-Cycle Design

e.g., locating a component in the water
column might yield higher
efficiencies but result in elaborate
maintenance requirements and
higher operational costs

109



Lessons Learned

Constructability

Can equipment be manufactured using
commercially available practices and
in existing factories?

110



Lessons Learned

System Integration

In addition to power block (HXs & T-6),
OTEC includes seawater
subsystems. dynamic positioning
subsystems; and, submarine power
cable

111



Lessons Learned

Embellishment

Has led to credibility barriers
and unrealistic expectations...

Please stop it!

112



Environmental Impact Assessment
(Lawrence Berkeley Lab.)

+ OTEC can be an environmentally
benign alternative for the
production of electricity and
desalinated water in tropical islands

+ Potentially detrimental effects can
be mitigated by proper design

113



Temp. Anomalies & Upwelling

Sustained flow of cold, nutrient-
rich, bacteria-free deep ocean
water could cause:

- sea surface temp. anomalies;
- biostimulation

If and only if resident times in
the mixed layer; and, the euphotic
zohe are long enough

114



Euphotic Zone: Tropical Oceans

* The euphotic zone: layer in which
there is sufficient light for
photosynthesis;

+ Conservative Definition: 1 % light-
pCHZTPGTiOH dep’rh (e.g., 120 m in Hawaii);

Practical Definition: biological
activity requires radiation levels
of at least 10 % of the sea

SUI"fGCZ value (e.g., 60 m in Hawaii).

115



EIA

Can OTEC have an impact on the
environment below the oceanic
mixed layer (sea surface to ~ 100 m) and,
therefore, long-term significance
in the marine environment?

116



OTEC Return Water

- Mixed seawater returned at 60 m

depth — dilution coefficient of 4
(i.e., 1 part OTEC effluent is mixed with 3 parts

of the ambient seawater) — ZQUi“bl"lle
(neutral buoyancy) depths below
the mixed layer;

* Marine food web should be
minimally affected and sea
surface temperature anomalies
should not be induced.

117



ETIA: Construction

OTEC Construction phase:

- similar to construction of power
plants; shipbuilding; and, offshore
platforms;

118



EIA: Operations

* Unique to OTEC is the movement
of seawater streams and the
effect of passing such streams
through the components before
returning them to the ocean;

* Losses of inshore fish eggs and
larvae, as well as juvenile fish, due
to impingement and entrainment
may reduce fish populations.

119



EIA: Operations

»+ CC-OTEC handling of hazardous
substances is limited to the working
fluid (NH-) and the biocide (Cl,,
evaporator biofouling);

- None for OC-OTEC

120



EIA: Operations

» Use of Cl, and NH; similar to other
human activities;

- If, for example, USA occupational
health and safety regulations are
followed, working fluid and biocide
emissions from a plant should be too
low to detect outside the plant site.

121



CO, Outgassing

+ CO, out-gassing from the
seawater used for the operation
of an OC-OTEC plant is < 0.5% the

amount released by fuel oil plants;

- The value is even lower in the case
of a CC-OTEC plant.

122



« Economically competitive
under certain “scenarios”

(defined by fuel-and-water-costs)

[Vega, 1992]




Nominal Size, TYPE Scenario
MW (After Eng. Dev.) (by ~ 10t Plant)
1 Land-Based OC-OTEC Diesel: Present Situation in Some
with 24 Stage for $45/barrel Small Island States.
Additional Water . 3
Production. Water: $1.6/m
10 Same as Above. Fuel Oil: U.S. Pacific Insular Areas
$30/barrel and other Island Nations.
Water:
$0.9/ m3
50 Land-Based Hybrid $50/barrel
CC-OTEC with 2" Stage. $0.4/ m3
or
$30/barrel
$0.8/ m3
50 Land-Based CC-OTEC
$40/barrel
100 CC-OTEC Plantship
$20/barrel

Fuel and Water Costs Required for Competitiveness (1990)



Economics Summary:
Hawai'i (2007)

Because OTEC is capital intensive
electricity cost-competitiveness if
Size > 50 MW & > 15-year Life-

Cycle.

125



60,000

t, $/kW

> 40,000

30,000

20,000

10,000

Installed Capital Cos

1st Plant and 10th Plant
Capital Cost Estimates (Vega 2007)

y = 53185x-0.364

-
y = 36525x-0.365 A i

O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Nominal Plant Size, (MW -net)
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Please Bewarell

Economy of Scale 10 vs. 100 MW —
* Power Block Cost of 100 MW plant is
~ 10 x 10 MW

+ Seawater Subsystems & At-Sea
Deployment of 100 MW is

<10 x 10 MW

+ Staffing requirements constant
100 MW = 10 MW




Cost of Electricity Production

COE ($/kWh) = CC + OMRER
+ Fuel (for OTEC zero)

CC = Capital Cost Amortization
(N.B. much higher for OTEC)

OMRA&R = Operations + Maintenance
+ Repair + Replacement

Tariff = COE + Profit - Subsidy
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COE, c/kWh

Cost of Electricity Production for 15" Plant and 10™ Plant
[ COE = CC + OMRER ]
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COE, c/kWh
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Schedule

 Detailed-Engineering-Design ~ one-
year; Permits ~ two-years;

* Major components are long-lead-
items, requiring 12 to 24* months
for delivery, and are available from
established industry:

* As much as 5-years after-receipt-
of-order (ARO) is required before
delivering electricity to grid.
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OTEC Plant Schedule

OTEC PLANT SCHEDULE Year1 Year 2 Year 3 Year 4 Year b
1.0 MANAGEMENT |

2.0 ENGINEERING DESIGN/PERMITS |:| T

3.0 ACQUISITION & CONSTRUCTION  |long-Lead Trems

4.0 DEPLOYMENT : :

5.0 STARTUP & COMMISSIONING i :

6.0 OPERATIONS —>
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OTEC Resource Data

Gérard C. Nihous
Dept. of Ocean and Resources Engineering
University of Hawalii



 Achange of 1 Cin AT roughly leads
to a change of 15% In P,

« Around Hawali, AT can be mapped
from dailly HYCOM+NCODA data
(1/12 resolution) since late June
2007.



Examples for AT defined between
20 m and 1000 m water depths:

- Feb. 15t ‘08 (‘cool season’ snapshot)

- Oct. 15t ‘08 (‘warm season’ snapshot)

- Aug. ‘08 & Feb ‘09

(spatial and temporal variabllity)
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H, or NH; OTEC Plantships

Nihous & Vega



Plantships

* Floating platforms housing hydrogen
or ammonia plants operated with 100
MW of OTEC-generated electricity

have been conceptualized;

» These plantships, deployed
throughout the tropical oceans,
could provide a significant source of
energy in the form of liquid
hydrogen or ammonia;



DP Plantship

+ A 285,000-tonne ship-shaped vessel is
first proposed. It provides deck space
for the OTEC plant, H, or NH, plant,
storage, and crew quarters;

* A length of 250 m and a beam of 60 m
are sufficient fo accommodate five
seawater sumps. operational draught is
20 m; 4 x 3000 hp thrusters permit
grazin? at 0.5 knots and maneuvering
capability;
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Fig. 1. Baseline conceptual design for the 100 MW OTEC-hydrogen plantships (side view).



16 (OF 64) MIXED EFFLUENT COLD WATER LIQUID HYDROGEN
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Fig. 4. Baseline conceptual design for the 100 MW OTEC-hydrogen plantships (lower deck).
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Fig. 5. Baseline conceptual design for.the 100 MW OTEC-hydrogen plantships (main deck, living quarters, storage tanks).



Momentum Flux Plantship

* A more compact plantship, jet-propelled
by the momentum flux of the OTEC
discharge seawater is conceptualized;

» The length is reduced 1o 200 m for a
displacement of 225,000 tonnes. Only
one sump is required and warm seawater
is fed through lateral openings.
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Fig. 6. Alternate design (compact) for the 100 MW OTEC-hydrogen plantships (lower deck).



OTEC: The Challenge

* Major Challenge is not technical but
rather financing of a capital intensive
technology without an operational record:

o If )Dlan‘r > 50 MW, cost of electricity
($/kWh) would be cost competitive;

—> How do you get more than £ Billion Dollars for a 100 MW plant

without a “track record” and without invoking national security, global
warming, environmental credits, etc.?

« Without operational records from a pre-
commercial plant (~ 5 MW) financing of
commercial sized plants (> 50 MW) is highly
doubtful;
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Development Schedule

(Assumption/Hope/Please)

USA OTEC DEVELOPMENT

(_

YEARS

_)

Electricity (Desal Water) Plants
in Hawaii and USA Territories:
~ 20 x 100 MW Plants

NH3/H2 Plantships Supplying all
States

| 1105 61010 | 111015 | 161020 | 211025 | 26 to
__________ e — — — — |_ — — ——
Ops Wl
“Prelim
Design Ops Ops —> —>
““““““““ i’"EE«'J.-E.F
. Design Ops —
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Global Oil Resources

- Consensus:

< 50 years until oil gone

Diminishing resources — Price
Increases

* Presently, H, produced with OTEC
electricity is equivalent to ~ 6 x price of
oil

— Would it be wise to begin to consider H,
production onboard OTEC plantships
deployed along Equator?
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